Objective: Representing Solution Sets of Equations and Inequalities

Do Now: What are the solutions? 1. $x^2 = 36$ 2. 2x + 1 > 13

Exam Prep: Equations have one solution.

- A) Always true
- B) Sometimes true
- C) Never true

Good day... solution sets can be shown in two ways.

Set Notation: $\{3, 4, 5, 6....\}$ or $\{x \mid x \ge 3\}$

Graphical Notation: 1 2 3 4 5

Basic Set Notation

A <u>set</u> is a collection of elements or members. Use braces {} to denote a set.

Roster Form of a set lists the elements in braces. {1, 2, 3} or {red, green, blue}

- Use "..." to show an infinite set. Odd Numbers = {1, 3, 5, ...}

Set-Builder notation describes a set. $\{x \mid x \text{ is a factor of } 12\}$, so $\{1, 2, 3, 4, 6, 12\}$.

1. P is the set of whole numbers less than 5.

a) Roster:

b) Set-Builder:

2. M is the set of odd whole numbers greater than or equal to 11.

a) Roster:

b) Set-Builder:

Note: The <u>empty set</u> (or null set) contains no elements. $S = \emptyset$ or $\{ \}$.

Practice: Write the solution set in set notation

1.
$$x + 10 = 25$$

3.
$$5x - 2 \ge 33$$

4.
$$x^2 = 49$$

Graphing Solution Sets

$$-3 \le n < 1$$

- Filled circle means that -3 is included in the solution.
- o Open circle means that 1 is not included.
- Heavy line shows all numbers between are included.

Heavy arrow shows that the solution set extends to the right or infinity (∞).

Note: Values in the solutions always have bubbles, like 3 and 1 above!

Practice: Graph the solution set (same as above)

Extra Practice with Inequalities

Extra Practice with inequalities	
Inequality	Graph
-2 ≤ n ≤ 2	-3 -2 -1 0 1 2 3
-2 < n < 2	-3 -2 -1 0 1 2 3
-2 < n ≤ 2	-3 -2 -1 0 1 2 3
-2 ≤ n < 2	-3 -2 -1 0 1 2 3
- 2 ≤ n	-3 -2 -1 0 1 2 3
n < 2	-3 -2 -1 0 1 2 3

1. Here is the graphical representation of a set of real numbers:

- a. Describe this set of real numbers in words.
- b. Describe this set of real numbers in set notation.
- c. Write an equation or an inequality which has the set above as its solution set.