for

Practice and Problem Solving

Practice by Example

Find the domain of each function.

1.
$$y = \sqrt{x - 2}$$

2.
$$f(x) = \sqrt{4x - 3}$$

3.
$$y = \sqrt{1.5x}$$

(page 638) 4.
$$f(x) = \sqrt{7 + x}$$

5.
$$y = \sqrt{x+3} - 1$$

6.
$$f(x) = \sqrt{x-5} + 1$$

7.
$$f(x) = \sqrt{3x + 5}$$

8.
$$f(x) = \sqrt{2 + x}$$

9.
$$f(x) = \sqrt{6x - 8} + 1$$

Example 2 (page 639)

Make a table of values and graph each function.

10.
$$y = \sqrt{2x}$$

11.
$$f(x) = 2\sqrt{x}$$

12.
$$y = \sqrt{4x - 8}$$

13.
$$y = \sqrt{3x}$$

14.
$$f(x) = 3\sqrt{x}$$

15.
$$y = -3\sqrt{x}$$

16. Physics You can use the function $v = \sqrt{64h}$ to find the velocity v of an object, ignoring air resistance, after it has fallen h feet. Make a table of values and graph the function.

Examples 3, 4 (page 639)

Match each graph with its function.

17.
$$y = \sqrt{x+4}$$

18.
$$y = \sqrt{x-2}$$

19.
$$y = \sqrt{x} + 4$$

20.
$$y = \sqrt{x} - 2$$

D.

Graph each function by translating the graph of $y = \sqrt{x}$.

21.
$$y = \sqrt{x} + 5$$

22.
$$y = \sqrt{x} - 5$$

23.
$$y = \sqrt{x} - 3$$

24.
$$y = \sqrt{x+2}$$

25.
$$f(x) = \sqrt{x-2}$$

26.
$$f(x) = \sqrt{x-4}$$

27.
$$y = \sqrt{x} + 1$$

28.
$$y = \sqrt{x+1}$$

29.
$$y = \sqrt{x-1}$$

B Apply Your Skills

- **30.** What are the domain and the range of the function $y = \sqrt{2x 8}$?
- 31. What are the domain and the range of the function $y = \sqrt{8 2x}$?

- **32. Writing** Explain how to find the domain of a square root function. Include an example.
- **33. Open-Ended** Give an example of a square root function in each form. Choose $n \neq 0$.

$$\mathbf{a.} \ y = \sqrt{x} + n$$

b.
$$y = \sqrt{x + n}$$

c.
$$y = n\sqrt{x}$$

d. Graph each function in parts (a)–(c).