

Objective: Simplifying Radicals

Homework RX1 - NYA p.619 #1 - 12, 72, 79

Do Now: Simplify

1. 2x + 5x	2. (9xy)(-4x)	3. −10y • 5y ² • 3y

Exam Prep: Which of the following is equivalent to x^6 ?

A)
$$x^2 \cdot x^3$$

A)
$$x^2 \cdot x^3$$
 B) $x^4 \cdot x \cdot x$ C) $x^3 + x^3$ D) $(x^3)^3$

C)
$$x^3 + x^3$$

D)
$$(x^3)^3$$

Yes, I'm a chicken, but I hang out with The Doctor and Abe Lincoln. Think of simplifying radicals as a game and you will be okay.

Exploration: True or False Hint: Use perfect squares that divide evenly.

$\sqrt{\mathbf{x} + \mathbf{y}} = \sqrt{\mathbf{x}} + \sqrt{\mathbf{y}}$	True or False
$\sqrt{\mathbf{x}\mathbf{y}} = \sqrt{\mathbf{x}}\sqrt{\mathbf{y}}$	True or False
$\sqrt{\mathbf{x} - \mathbf{y}} = \sqrt{\mathbf{x}} - \sqrt{\mathbf{y}}$	True or False
$\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$	True or False

Results

GOOD		BAD	
Mult	$\sqrt{\mathbf{x}}\sqrt{\mathbf{y}} = \sqrt{\mathbf{x}\mathbf{y}}$	Add	$\sqrt{\mathbf{x}} + \sqrt{\mathbf{y}} \neq \sqrt{\mathbf{x} + \mathbf{y}}$
Div	$\frac{\sqrt{\mathbf{x}}}{\sqrt{\mathbf{y}}} = \sqrt{\frac{\mathbf{x}}{\mathbf{y}}}$	Sub	$\sqrt{\mathbf{x}} - \sqrt{\mathbf{y}} \neq \sqrt{\mathbf{x} - \mathbf{y}}$

Rules for Simplifying Radicals

A radical is simplified when both of the following are true:

- The numbers under the radical sign (radicands) have no square factors
- The number of radical signs in the expressions is as small as possible

Hints

- 1. Look for perfect square factors in numbers and variables
- 2. Check your solution for simplest form using the rules

Numbers

Original	Factored	Simplified	
$\sqrt{24}$	$\sqrt{4}\sqrt{6}$	2√6	
$\sqrt{18}$	$\sqrt{9}\sqrt{2}$	3√2	
$\sqrt{30}$	No Perfect Square Factors	$\sqrt{30}$	
$\sqrt{48}$	$\sqrt{4} \sqrt{12}$ Best Choice?	$2\sqrt{12}$ NOT DONE	
2√12	$2\sqrt{4}\sqrt{3} \rightarrow 2 \bullet 2\sqrt{3}$	$4\sqrt{3}$	
5√18	5 √ 9 √ 2	$5 \bullet 3\sqrt{2} \rightarrow 15\sqrt{2}$	

Practice

1. √ 20	2. 6√ 75	3. 2√ 14
4. 6√ 16	5. √ 32	6. 10√ 19

Quick Refresh: Exponent Product Law

 $\mathbf{x}^3 \bullet \mathbf{x}^7 = \mathbf{x}^{10}$

Variables

Original	Original	Factored	Simplified
EVEN	$\sqrt{\mathbf{x}^6}$	Perfect [©]	X ⁶
EVEN	$\sqrt{\mathbf{y}^{14}}$	Perfect ©	y ⁷
ODD	$\sqrt{\mathbf{z}^9}$	$\sqrt{z^8}\sqrt{z} \leftarrow 1^{st} \text{ Power}$	$z^4\sqrt{z}$
ODD	$\sqrt{\mathbf{k}^{13}}$	$\sqrt{\mathbf{k}^{12}}\sqrt{\mathbf{k}}$	$k^6\sqrt{k}$

Practice

1. √h ⁴	2. $\sqrt{x^{11}}$	3. $\sqrt{p^{20}}$
4. $\sqrt{c^{600}}$	5. √ w ⁴³	6. √m

Mixed Problem

$4\sqrt{12w^5xy^{10}z^3}$	Original
$4 \sqrt{4} \sqrt{3} \sqrt{w^4} \sqrt{w} \sqrt{x} \sqrt{y^{10}} \sqrt{z^2} \sqrt{z}$	Separate and Factor
$4 \bullet 2 \sqrt{3} w^2 \sqrt{w} \sqrt{x} y^5 z \sqrt{z}$	Square Root
8w²y⁵z √3wxz	Organize

Mixed Practice

1. $5\sqrt{x^5y^{10}z}$	2. $\sqrt{100ab^7c^{20}d^8}$	3. $7\sqrt{18y^{10}z}$