Objective: Solve Quadratic-Linear Systems Algebraically

Do Now: Two consecutive multiples of three have a product of 54. Find them.

Exam Prep: Which of the following represents the product of two consecutive multiples of 5?

A)
$$5x^2$$

B)
$$(x + 1)(x + 5)$$
 C) $x^2 + 5$ D) $x^2 + 5x$

C)
$$x^2 + 5$$

D)
$$x^2 + 5x$$

One big ugly system... or is it?? - Trust The Doctor, this looks a lot worse than it really is.

P.S. Graphing is coming later... for now its Algebraic Magic.

A linear-quadratic system has at least one of function. Recall that a solution occurs when the equations intersect. There can be two, one, or no solutions.

Solving Quadratic-Linear System: Algebra

$y = x^2 + 7x - 24$ y = 10x + 16		Original System.		
y = 10x + 16		Start with one equation.		
$x^2 + 7x - 24 = 10x + 16$		Substitute the other for y.		
$x^2 - 3x - 40 = 0$		Simplify so it equals zero (subtract 10x and 16)		
(x + 5)(x - 8) = 0		Use the zero-product property.		
(x + 5) = 0 $x = -5$	(x - 8) = 0 $x = 8$	Split and solve		
y = 10(-5) + 16 y = -34	y = 10(8) + 16 y = 96	Substitute them in the original linear equation.		
(-5, -34)	(8, 96)	Two solutions		

Practice

1. $y = x^2 + 2x - 4$ y = x - 2	2. $y = x^2 - 11x - 36$ y = -12x + 36	3. $y = x^2$ y = 4

4. $y = x^2 - x - 90$ y = x + 30	5. $y = 5x - 20$ $y = x^2 - 5x + 5$	6. $y = x^2 + 11$ y = -12x